A New Design for the Tokyo 2020 Olympic Stadium

Looking ahead, the next Olympic Games will be hosted by Tokyo in 2020. The initial Zaha Hadid design for the Tokyo National Stadium helped secure the city’s bid, but was quickly ditched due to its exorbitant cost.  After two international design competitions, Japan settled on the latticed green clad stadium by the Japanese architect Kengo Kuma.

This new stadium is far more subdued than Zaha Hadid’s and does not evoke the same awe as the National Gymnasium by Tange and Tsuboi Yoyogi.

To reflect upon and honor the structural prowess visualized in the sweeping roof lines of the Yoyogi Stadium, as well as to keep an open mind toward the future, the International Association for Shell and Spatial Structures (IASS) organized a conceptual design competition for a new national stadium in Tokyo, open to young designers under the age of 40.

The competition called for a “21st century spatial structure” on the site of the former National Olympic Stadium by Mitsuo Katayama. The competition jury, consisting of professor emeritus Hiroshi Ohmori (Nagoya University), architect Hiroshi Naito, engineer Knut Stockhusen (sbp), professor Ken’ichi Kawaguchi (University of Tokyo, Chair of the IASS2016), and engineer Bill Baker (SOM), considered the innovativeness of the concept system and the soundness of the structure.

I have the pleasure of presenting three design proposals developed and submitted by our graduate students. They all used form finding techniques in innovative ways to drive the geometries of their stadiums.

The Mountainous Gridshell entry by Mauricio Loyola and Olek Niewiarowski has been selected as one of five finalists by the competition jury, and they have been invited to present their design in September at the IASS Annual Symposium in Tokyo.

NEW LEAF STADIUM by Xiaoran Xu, Lu Lu, and Iwanicholas Cisneros (click to enlarge):

 

HANA STADIUM by Kaicong Wu, Hongshan Guo, and Isabel Morris (click to enlarge):

 

MOUNTAINOUS GRIDSHELL by Mauricio Loyola and Olek Niewiarowski (click to enlarge):

 

Author: Sigrid Adriaenssens

Our Summer Rammed Earth Experiments 2/3: Construction of swirling rammed earth wall

Before the large swirling structure in Forbes garden could be constructed, a set of tests walls were built to master the construction workflow. The tests walls will also be used to test a different set of erosion protection measures, as one of the goals of our research experiment is to assess the erosion resistance of rammed earth in New Jersey. The first test wall was built out of unstabilized earth with no erosion protection implemented for reference. The second wall was also unstabilized, but plants will be grown on top of this wall in the hope that their roots will slow down the erosion process, while their leafs protect the dirt from driving rain. The third test wall was stabilized on the outside with a 10% lime-earth mixture, which was applied only at the outer 3 cm. This technique is a traditional rammed earth construction technique originating in Spain and referred to as “calicascado” which can be freely translated as “lime shell”. The 4th and final test wall was built unstabilized earth once again again, but half of it was coated using a silicone spray, while the other half was coated with a lime wash. All of the test walls were built with a reusable plywood formwork on top of a blue stone slab..

Screen Shot 2016-07-07 at 1.56.16 PM
Scheme of the test walls
IMG_4245
Rammed earth test walls. Both left walls are unstabilized, the wall still in the formwork was built using the calicascado technique.

After the successful completion of the test walls, we moved on to the much larger spiraling wall inside Forbes garden. As explained in the previous blog post, the spiral consists of a lower bench area and a taller wall, separated by an opening. At its lowest point the bench is 40 centimeters high, and at its highest point it is 3 meters tall. Both rest on a blue stone foundation. Again, different erosion-protection measures were implemented. The bottom 15 cm of the entire wall was made out of a 25% lime- earth mixture, and placed on a water impermeable membrane to avoid capillary rise. The outside of the bench and most of the rest of the spiraling wall was stabilized using the calicascado technique after its promising results on the test walls. A great advantage of this technique is that it allows for a minimum volume of soil that needs to be stabilized with lime and thus requires less material transport. To compare the durability of the technique once again a section was left unprotected. Additionally, one section of the wall was entirely lime-stabilized using 6% lime as an extra test.

Continue reading “Our Summer Rammed Earth Experiments 2/3: Construction of swirling rammed earth wall”

A Delightfully Sweet Pavilion

Screen Shot 2016-07-06 at 11.07.58 AM
Close-up of the puzzle-key connection in the chocolate pavilion. (Image credit Axel Kilian)

On July 21st every year, we celebrate Belgian National Day and think about all the good things Belgium has to offer: Tintin, cycling, soccer, and– from a more gastronomical perspective– waffles and chocolate. This is an ideal time to reflect upon our chocolate design project from 2013.

A pavilion made out of chocolate must be a cocoa lover’s wildest dream. We teamed up with Prof. Axel Kilian (Princeton University) and the Belgian chocolate manufacturer Barry-Callebaut to discover chocolate’s structural properties and let them inform our methodology for finding the shape of such a pavilion.

The R&D branch at Barry-Callebaut developed a cocoa compound of sugar, cocoa powder, milk permeate, and vegetable oil that would be structurally strong enough to support the pavilion’s own weight at room temperature. We tested the compound mixtures and found that the strength-to-weight ratio of chocolate compounds is quite low — about 24 times lower than standard concrete.

Screen Shot 2016-07-06 at 11.08.08 AM
Testing material properties in the lab

Continue reading “A Delightfully Sweet Pavilion”

Our Summer Rammed Earth Experiments 1/3: The Golden Spiral for Forbes Garden

Introduction

Dirt—as in clay, gravel, sand, silt, soil, loam, mud—is everywhere. The ground we walk on and grow crops in also happens to be one of the most widely used construction material worldwide. Earth does not generate CO2 emissions in its generation, transport, assembly or recycling and this in contrast to more conventional building materials such as concrete and steel. In rammed earth construction a mixture of  clay, silt, sand and gravel is compressed into a formwork to create a solid low-cost load-bearing wall. Despite the renewed architectural interest in contemporary rammed earth construction in (semi-)arid climates of the USA, little is known about its potential in the erosive humid continental climate of New Jersey. Because of the great potential of rammed earth as a local building material, we decided to design and construct a spiral rammed earth structure in Forbes Garden that will be an enduring representation of Princeton’s effort to create a campus containing sustainable and elegant zero carbon architecture.

The Material:  Dirt

The Form Finding Lab’s team established the suitability of Princeton soil for earth construction though an extensive set of laboratory tests. The team, led by PhD candidate Tim Michiels and supported by undergraduate student Amber Lin ’19 and summer intern Jacob Essig, subjected a series of compacted samples with different water contents to compression tests (the rammed earth samples had an average compressive strength of 1.35 MPa). The team also experimented with lime additives  (3%, 5%, 10%, and 25%)  to test the compacted dirt’s resistance to weathering on a series of prototype walls (See image above title).  All these results informed the design of the structure that was designed for Forbes Garden as part of the Campus as Lab Initiative .

Presentation1
Testing of compacted samples with different dirt compositions to establish unconfined compressive strength. The local soil was composed of 19% gravel, 42% sand, 24% silt and 15% clay.

The Site: Princeton Garden Project

The Princeton Garden Project at Forbes College is a student led initiative that supports and advances sustainability and food awareness  on Campus. Following with its mission of sustainability, the rammed earth spiral is a sustainable experiment made with local and abundantly available materials intended to enhance the existing organic garden and transform it into a space for research and learning.

Presentation1
The Garden Project, the ideal collaborator for a rammed earth project (image credit Garden Project at Forbes College)

The Design:  A Site-Specific Golden Spiral

Continue reading “Our Summer Rammed Earth Experiments 1/3: The Golden Spiral for Forbes Garden”