Reflecting on the Future of Design at the IABSE conference

On Saturday, April 29, the IABSE Future of Design 2017 conference was held in New York City. The Form Finding Lab was well represented, with Victor Charpentier in the organization, Professor Adriaenssens as a speaker and alumnus Professor Ted Segal (Hofstra University) leading a design workshop. Demi Fang ’17 summarized the main ideas of the speakers and panelists:

The Future of Design NYC conference kicked off with a vibrant set of “10 + 10 Talks,” in which structural engineers paired up with professionals in a field slightly different from their own. Each pair gave a joint presentation on their thoughts on the “future of design.”

Throughout the five presentations and the Q&A that followed, several recurring themes unfolded.

Technology can be leveraged as a tool to enhance, rather than compete with, the creative human process of design.

Glenn Bell (SGH) and Antonio Rodriguez (LERA) began with a presentation titled “Disruptive Influences as Opportunities, Not Threats.” Rodriguez gave a personal anecdote of a mentor who once warned him against entering the engineering field with the argument that computers would soon take over engineers’ work. Rodriguez explained how he has found that some engineering decisions do, and always will, require human judgment. That’s not to say that technology should be considered a competitor; rather, technology can play a key role in enhancing those creative processes that are best executed by humans.

FOD1
Antonio Rodriguez of LERA on distinguishing the roles of technology and humans in the future of design.

Bell quoted Chris Wise of Expedition Engineering from a talk at the 2015 IStructE conference in Singapore: “Which bits of the engineer’s life are really human and which should we let go to machines?” Many presenters touched on the importance of this distinction, especially with the rise of digital drawing tools that easily allow for technology to “take over” the design process. Rodriguez made the distinction by identifying the processes at which computers do best, such as repetitive tasks and optimum searches. The use of these technologies “free designers to do what they do best: solving human problems.” He went on to conclude that the “future of design depends on how technology is used to enhance people’s skills, facilitate collaboration, and improve relationships.”

This approach was whole-heartedly echoed in the following presentations. Eric Long (SOM) cited Frei Otto’s scientific explorations of soap film as an example of how “technology inspires design.” As a firsthand example, he cited SOM’s partnership with Altair in topology optimization; fittingly, his presentation partner was Luca Frattari of Altair, who emphasized the fundamental role of these technologies as tools, or “a complicated pencil.” Sigrid Adriaenssens (Princeton University) presented some of her engineering projects such as Dutch Maritime Museum courtyard roof and the Verviers Passerelle from her practicing days in the Belgian structural engineering firm Ney and Partners. With a nod to David Billington’s principles on structural art, she used these examples to note how “using optimization tools efficiently can allow for efficient, economic, and elegant systems.” Her presentation partner, Bill Washabaugh (Hypersonic), also shared stunning sculptures that utilized engineering technology to not overshadow but recreate motions of nature, such as the rippling reflection of a tree over water, the murmuring of a sea anemone, or the flight of a flock of birds.

With increased levels of collaboration in the design process, broadness and diversity in education can help prepare engineers well for future challenges.

Bell pointed out that the drive towards resource efficiency and sustainability has led to the necessity of interdisciplinary collaboration in the design process. He described his perception of the structural engineer as a T-section, with the “flange representing a broadness in education, and the stem representing a fundamental expertise in structures.” As one of the few educators presenting, Adriaenssens answered one of the last questions squeezed into the end of the Q&A session: what educational approaches should be taken to prepare the next generation for the future challenges of design, which differ greatly to the challenges of the older generation? Adriaenssens shared her conviction in bringing students with different backgrounds into the field of engineering in order to supply a diverse workforce to face these interdisciplinary challenges. “Many of the students I advise are excellent in other fields – they are superb athletes, musicians, or dancers. Asking an 18-year-old to focus on one particular field limits their potential.” She mentions courses at Princeton that bridge engineering with other fields such as the arts, explaining that “aside from the traditional engineering courses, we also need courses that focus on interdisciplinary training,” supporting Bell’s previous statements.

FOD2
Bill Washabaugh (left) and Sigrid Adriaenssens present their projects that utilize technology as an advanced tool for imitating and perpetuating the systems and aesthetics of nature.

Guy Nordenson (Princeton University) reinforced his colleague’s comments with statements on a more specific type of diversity: “I think Sigrid is a manifestation of where we’ve come and where we’re going,” not just with her more creative and innovative approach to engineering, but also her presence as a female in the field. “Looking out at the audience, it’s great to see that there are a lot more women in the field than when Glenn and I were students. We can do a lot to improve diversity in education starting as early as high school.” Continue reading “Reflecting on the Future of Design at the IABSE conference”

What is the value of critique in structural design?

Practicing chefs in the kitchen can revise and refine a recipe to their own satisfaction, yet their progress need not be limited by their own opinion. What might result from allowing a fellow chef or a mentor to taste their recipe? Each taster might give his/her own personal feedback – too salty, not crisp enough – and the aspiring chef, filtering through the responses, may … Continue reading What is the value of critique in structural design?

Assessing the Stability of Masonry Structures (part 2): Numerical and Physical Modeling

QUICK UPDATE:  Demi just had her paper published ‘Assessing the Stability of Unreinforced Masonry Arches and Vaults: A Comparison of Analytical and Numerical Strategies’, in the Journal of Architectural Heritage.  You can find it here

—————

This post is second in a series covering different assessment methods for stability of masonry structures. Part 1 covered classical and equilibrium methods; this post covers suitable numerical modeling techniques as well as different examples of physical modeling for masonry stability.

4. Numerical modeling

Several methods of numerical modeling for masonry structures exist, as demonstrated by the flowchart in Fig. 10.

numericalflowchart
Figure 10: Overview of numerical modeling methods for masonry structures, adapted from [41] with [8]
As the first level of Fig. 10 suggests, numerical modeling of masonry structures can be divided into four main categories: macro-modeling, homogenized modeling, simplified micro-modeling, and detailed micro-modeling. Asteris et al. [41] provide discussions, summarized below with some additions where noted, on the differences between these modeling approaches. Fig. 11 also depicts the different numerical modeling approaches. In this section, macro-modeling and simplified micro-modeling are the focus.

modelingstrategies
Figure 11: Illustration of different strategies for modeling true masonry sample (a): (b) one-phase macro-modeling, (c) two-phase micro-modeling, and (d) three-phase micro-modeling [41]

4.1 Macro-modeling: masonry as a one-phase material

The macro-modeling approach models both bricks and mortar (or all bricks, in the case of dry masonry) as a homogeneous continuum as in Fig. 11(b). As the subsets under macro-modeling in Fig. 10 suggest, these numerical models are typically finite element models.

Continue reading “Assessing the Stability of Masonry Structures (part 2): Numerical and Physical Modeling”

Shells for the senses: the multidisciplinary success of “Stage by the Sea”

When we speak of “aesthetics”, the first sense that comes to mind is sight – when appreciating the “aesthetics” of a structure, we often refer a structure’s beauty. But a secondary definition in Merriam-Webster reminds us that aesthetics can also be defined as “appreciative of what is pleasurable of the senses.”

In Professor Adriaenssens’s words, “a formal analysis, deprived of tactile, auditory and olfactory experiences, seems only to capture to a certain extent the esthetic intent of curved surfaces.” How might structures embody acoustics and the auditory senses? Today we examine Stage by the Sea, a small concert stage in Littlehampton, England that does just that.

Shelter.jpg
Image courtesy of Flanagan Lawrence Architects.

Context-driven design

The design brief first set out by Littlehampton was for a stage and a shelter to occupy its beach and “reinvigorate the town’s gentility of the early 20th century.” The project, being publicly funded, had an extremely tight budget of £100,000.

acousticshells07flanaganlawrence
Beach view from the shelter shell of Stage by the Sea. Image courtesy of Flanagan Lawrence Architects.

Continue reading “Shells for the senses: the multidisciplinary success of “Stage by the Sea””

What I am Thinking: Reflective Practitioner and Educator Eric Hines

“The two worlds of practice and teaching are hard on each other. To live between them is kind of hard because you get pulled in both directions and don’t get a lot of sympathy from either side. I’ve learned how to be flexible and strong in certain ways by running between the two,” Prof. Hines says. “Going into it, I had more literal expectations: ‘let’s do some research, let’s advance the state of the art, let’s teach the students about our buildings’. But the good stuff is a level down from that: it’s about the people, how we understand things, how we do our work, how we fail and recover, how we succeed, and how we support each other.”

090306_1538_practice109.cr2
Tufts University Civil & Environmental Engineering Professor of the Practice Eric Hines takes one of his classes on a tour of the building projects his company was working on in Post Office Square. Photo: Tufts University

I first heard of Prof. Eric Hines as a rising sophomore at Princeton working with Prof. Adriaenssens in building on her existing Mechanics of Solids course. At the time, we drew much inspiration from Prof. Hines’s compelling pieces of writing on education and creativity in engineering, such as his series “Principles in Engineering Education” and his essay “Understanding Creativity.”

It is no coincidence that he wrote for and co-edited the Festschrift Billington 2012, a series of essays written in honor of Princeton Civil & Environmental Engineering Department’s Emeritus Professor David Billington; Prof. Hines was a graduate of the Princeton CEE Department himself. It was thus inspirational to meet Prof. Hines last week at Tufts University, where he has taught since 2003. As Professor of Practice in the school’s CEE department, he divides his time between Tufts and the LeMessurier engineering office in Boston.

Being in practice has forced Prof. Hines to think carefully about what he brings to the classroom. He expressed frustration that while the theoretical examples presented in textbooks are useful in helping students grasp concepts, “when you’re working in the real world on design, the real world doesn’t divide itself neatly up into little ideas.” In real problems he encounters in practice, “the ideas are important for understanding, but all these wild things happen: they intersect and pull over on each other, they become complex and even ironic in their intention… In the classroom, I like to have a real example, but the real examples are messy and difficult, and it can be hard to turn them back into theory.”

Continue reading “What I am Thinking: Reflective Practitioner and Educator Eric Hines”

Learning from Japanese Structural Design: Reflections on the Symposium

MoMA’s exhibit on Japanese architecture (through July 31, 2016) examines the “constellation” of influence in the country’s early-21st-century architecture and design community, but perhaps not so explicit in the exhibit are 1) the structural engineers’ parallel relationships of influence and 2) the structural engineer’s role in collaborating with architects to produce these works. In an effort to explore these characteristics of structural engineering influence in Japan, Prof. Guy Nordenson (of Princeton University and Guy Nordenson and Associates) and Prof. John Ochsendorf (of MIT) organized a symposium, titled “Structured Lineages: Learning from Japanese Structural Design,” which brought together some of the top structural designers from both Europe and the US for discussion.

Most of the lectures presented by the guests focused on the works and experiences of specific Japanese structural designers and educators such as Yoshikatsu Tsuboi, Mamoru Kawaguchi, Masao Saitoh, Gengo Matsui, Toshihiko Kimura, and Mutsuro Sasaki. Each half of the symposium brought the speakers together for a vibrant panel discussion moderated by our Prof. Sigrid Adriaenssens and MIT’s Prof. Caitlin Mueller. The final panel discussion welcomed Prof. Sasaki himself to the mix.

IMG_6431.JPG
First panel discussion moderated by Prof. Adriaenssens. Left to right: Seng Kuan, Marc Mimram, Sigrid Adriaenssens, Mike Schlaich, Laurent Ney.
IMG_6433.JPG
Second panel discussion moderated by Prof. Mueller. Left to right: Guy Nordenson, Chikara Inamura (acting as Prof. Sasaki’s interpreter), Mutsuro Sasaki, Caitlin Mueller, Jane Wernick, Bill Baker.

Several fruitful discussions and themes arose from the independently-constructed lectures. Reflecting the literal implications of “lineages,” Prof. Seng Kuan referenced the traditional lineage model in which Japanese arts and crafts get passed down for seven or more generations. As Prof. Ochsendorf demonstrated in his lecture with the help of Chikara Inamura, such a “lineage” is visible in 19th-20th century Japanese structural engineering:

Continue reading “Learning from Japanese Structural Design: Reflections on the Symposium”

What I am Thinking: Thorsten Helbig on Curiosity and Collaboration in Engineering

Despite my arriving twenty minutes early to Knippers Helbig’s office in New York’s financial district on a brisk Friday afternoon, I am warmly welcomed at the door by an engineer whose work I probably just interrupted. As he goes to summon a man around the corner, I peek at the office space: not enormous, but still spacious and pleasant, giving no sign of being too small for the number of engineers at work. Thorsten Helbig, principal of the Germany-based engineering firm Knippers Helbig (KH), emerges immediately, equally warm and welcoming as he ushers me into the office’s conference room. The room opens up on two sides to the office space, and Helbig goes to shut both doors; despite the auditory privacy, the work carried out in this room is always transparent: one wall of the conference is a glass window, allowing any passersby to glimpse at our meeting through the satisfyingly enormous letters “KH” staining the glass orange.

IMG_4649 copy
The Knippers Helbig office space at 75 Broad St, New York. © Knippers Helbig

It is perhaps no coincidence that the office space articulates such clear architectural considerations. Helbig’s approach towards meshing engineering expertise with architects immediately becomes our first and most fruitful point of discussion. “In a relationship between engineer and architect, I think what is most important is that there is mutual respect and a communication,” Helbig asserts. “Ideally, the communication starts very early in the design process.” In many projects, he explains, Knippers Helbig is involved from the very beginning—ideally, at the competition stage—to the final completion and execution of the project. From the start, every decision made by the architects in organizing the program leads to consequences that require the engineers’ input regarding limitations such as soil conditions, column spacing, and slab systems. Inevitably, the engineers put forth decisions and recommendations that influence the project’s appearance, but Helbig underlines that “we as engineers should not try to be architects, but rather maintain an engineering perspective.” Projects can benefit so much more from an engineer’s engineering contribution, Helbig points out. “At the same time,” Helbig qualifies, “I expect that everybody at the table has a qualified opinion. As an engineer, we can question some of the architect’s decisions, which can—in the best case—make the architecture even better.” Helbig says that while there exists the notion of signature architects, he doesn’t believe in “signature engineering.” We can look at some buildings and often guess at the architect, but Helbig doesn’t find it “right” to be able to do the same with the engineers of building structures, even if the engineers’ contribution can be clearly read in many building types. “As an engineer, I want to be able to support architecture. We start with the same open-minded approach in every collaboration, but it consequently leads to different results when we work with Massimiliano Fuksas, Renzo Piano or Liz Diller because their individual architectural approaches require individual engineering solutions. I see us as collaborators in exploring the inherent potential of the architectural intention – and sometimes innovatively engineered parts act as catalysts for specific architectural expressions.”

Continue reading “What I am Thinking: Thorsten Helbig on Curiosity and Collaboration in Engineering”

Sagrada Familia: the structure sometimes misunderstood

Incomplete but already a UNESCO World Heritage Site, Gaudí’s Sagrada Família towers over the city of Barcelona. Over a century in the making, the cathedral is expected to finish in the next 10-20 years.

2 IMG_2151
The cathedral’s nave has a unique and breathtaking roof geometry accompanied by rows of treelike columns.
3 IMG_2166
A spectacular amount of light filters into the nave from above.

In the form finding world, we’re often familiar with Frei Otto and Heinz Isler’s hanging methods, in which inverting a hanging model in pure tension informed the designer of the structure’s final form, which takes pure compression. While Gaudí is also known for making hanging models, a common misconception is that he embraced his hanging models as a way of determining the shape of his structures.

Continue reading “Sagrada Familia: the structure sometimes misunderstood”