Destructive form-finding using robotics

Can you improve the resistance of a shell structure by smashing, and subsequently repairing it? To do so you would require a very controlled environment, and thus Form-Finding Lab researchers resorted to Princeton’s School of Architecture robot.

Interactive digital fabrication environment to explore gypsum shell reinforcement from T Michiels on Vimeo.

In the context of the course ARC 596 “Embodied Computation”, a project was developed to explore novel forms for gypsum shell by repeatedly breaking and repairing these types of shells using digitally controlled tools.

The School of Architecture’s ABB 7600 robot is used to repetitively break, scan and repair gypsum shells. The broken shells are repaired by selectively gluing weak areas in order to create a bond that is stronger than the initial unreinforced gypsum. The investigated hypothesis is that after every iteration the newly repaired shell has the potential of a greater load bearing capacity than its predecessor. The reinforcement pattern is directly determined by the shell’s crack pattern and does not arise from an analytical approach typical to common reinforcement strategies. Indeed, the process is not dependent on a preconceived design, but much rather evolves from the intrinsic material properties and the initial form and imperfections of the shell. The process can still be steered by the designer in real-time through a set of interactive overlays in a custom control software.

Continue reading “Destructive form-finding using robotics”