Extraordinary Processes: Extraordinary Beds

At Princeton, our students are taking final exams now. In the course that the visual artist Joe Scanlan and I teach, VIS418/CEE418 Extraordinary Processes, students were tasked this semester with designing and building beds that are equally inspired by their creativity and the structural principles of engineering. What you might find interesting is that, for their final exam, the students were required to spend the … Continue reading Extraordinary Processes: Extraordinary Beds

What I am thinking: bio-inspired engineer and artist Bill Washabaugh

Bill Washabaugh is an artist, aerospace engineer, roboticist, designer, and maker. Bill is the founder of Hypersonic Engineering & Design, a firm in NYC working at the intersection of technology and art. He has designed flight control software for Boeing, music instruments for Bjork, and a massive stage show for U2. Trained as an Aerospace and Mechanical Engineer, he pushes the boundaries of the art … Continue reading What I am thinking: bio-inspired engineer and artist Bill Washabaugh

What I am thinking: form making artist Maria Blaisse

Maria Blaisse is a Dutch visual artist and designer. She authored the book “The Emergence of Form”, in which she discusses her in-depth research into form in various materials and the numerous application possibilities, both autonomous and product-oriented.

Sigrid Adriaenssens: Why and how do you generate curved forms?

Maria Blaisse: discovering the curved lines .. while experimenting with incisions  in a rubber inner tube ( for a party of my children)  and while putting the forms on my head  something amazing happened. Then I realized I touched an energy field. I am still working with it.

I found the potential of the inner and outer curve of a torus. The inner curve generates energy and form, while spiraling centripetal. It was the most powerful thing to discover, the outer curve spiraling centrifugal loses form and energy. In my book the emergence of form you can see this research based on one form and one structure from here one can design any form or structure without any waste.

Variations on rubber inner tube – Copyright of Maria Blaisse

In your book “The emergence of form”, you state “form is ‘frozen’ movement”.  Please explain and illustrate that idea?

A form is always part of a movement. I found out while editing film that the stills have the most impact: the form is energized.

systematic variations in gauze structures based on one form  .png

Systematic variations in gauze structures based on one form – Copyright of Maria Blaisse

In your design approach, you emphasize beauty (wanting to ‘move’ people) but also material and energy efficiency. Why is that important to you and to society?

Continue reading “What I am thinking: form making artist Maria Blaisse”

Constructing Ice Structures

Since it has been snowing in Princeton this week, there is really no better time to write about how to construct structures out of ice. The motivation of building with ice – as opposed to another construction materials such as concrete-  is that it makes experimenting much more economic and zero-carbon.  Structural ice experiments also allow for the ability to discover a new medium that could fill the demand for a building material that will not see a dramatic decrease in its strength after being subject to several extreme freeze-thaw cycles [1].  In many extreme cold environments, it would be desirable to have an inexpensive and safe way to reconstruct infrastructure or buildings out of ice to address annual need for shelters and roads rather than rebuilding or repairing these possibly concrete structures that will ultimately be damaged by the weather each year. In the following sections we provide a historic glimpse of key ice structures and how they were built.

Throughout history, ice has been used as an inexpensive and naturally available building material. The oldest known ice structures are igloos that were made from snow blocks [2]. The igloos date from prehistory and have developed a form in which the structure takes exclusively compressive stresses and experiences zero bending moment everywhere in the shell. This form, called a catenoid evolves from the revolution of a parabolic cross-section into a dome. The igloos are constructed into this form using compacted ice blocks.  The gaps between the blocks are filled with snow.  Heating in the igloo then melts the inner surface of the igloo which then refreezes as a layer of ice that contributes to the overall strength of the igloo [2].

Iglulik Snowhouse (photo by Albert Low, 1903, image credit Library and Archives Canada/C-24522).

 

In 1739, Russian empress Anna Ivanovna order the first ice palace to be built [2].  These impressive structures were made of blocks from rivers and lakes that were trimmed and stacked to form a masonry wall [2].  This marked the beginning of functional ice structures that did not take the traditional catenoid shape.The form was imitated in the 1980’s using cast snow in which wooden molds were used to create compact snow walls to be sculpted.

Ice palace (left) for Russian empress Anna Ivanovna (right Louis Caravaque, 1730)  (image credit wikimedia)

More practically, recent construction of ice hotels has seen the use of special wet snow being sprayed onto steel molds with heights up to 5m and spans up to 6m.  In this process the snow is allowed a two day freezing period before the molds are removed.  These structures get stronger as the snow melts and refreezes over time.  This occurs on a diurnal cycle as the top layer of snow melts slightly each day and then freezes to solid ice during the night [2].

Ice Hotel Sweden constructed of wet snow sprayed onto steel molds (image credit holidayguru.ie)

Continue reading “Constructing Ice Structures”

In the spirit of the Olympic Games: the “Carioca Wave” Freeform of Rio de Janeiro

Untitled

The Carioca Wave was completed in 2013 in Rio de Janeiro, not far from the 2016 Olympic Village site. We first discussed this structure in our interview with Knippers Helbig. In this post we observe architect Nir Sivan‘s design process for designing this elegant structure.

Creating the “Carioca Wave” project in Rio

When Nir Sivan got the opportunity to build a freeform steel/glass canopy roof as a welcoming entrance area to “CasaShopping,” South America’s biggest design center, he was thrilled and knew that whatever he designed, it had to be and behave as a part of the “marvelous city,” as Rio is often nicknamed.

Nir Sivan started working on the master plan in his office in Rome, but the actual shape of the project was only designed when he came to Rio. The inspiration came while he was sitting on one of the many famous beaches with a local cold drink. He remembers drawing in his sketchbook – 5 or 6 simple lines, but they captured it all:
 the calm; the movement; the sound, the “Carioca,” as locals from Rio area are called.

He created a shape of a single yet geometrically complex surface of the double curvature. The surface starts at the upper floor above a blue colored water pool, then rises up curving, growing forward, twisting to the other side, and finally dropping down to a lower floor, splashing into a white colored pool. Around it you will find water, sand, Portuguese paving, and other elements to merges the project with the local language.

Inspired by its context, the project was driven artistically and emotionally, and developed architecturally, adding both value and function to its surroundings.

“Sculpting architecture”

The design approach included sculpture and design methods that were further developed using automotive industry tools and advanced parametric instruments to ensure tight control of the very particular geometry. Nir Sivan developed this unique process involving automotive industry, believing it gave him complete freedom to create while maintaining coherence with concept, structure, and form.

Putting things together

Continue reading “In the spirit of the Olympic Games: the “Carioca Wave” Freeform of Rio de Janeiro”