Belgian Shell Art and Architecture : Marcel Broodthaers and Andre Paduart

This post reflects some of the storyline that Prof. Adriaenssens, invited by the Broodthaers Society of America, will be telling on Tuesday, March 28, 6:30–8pm at Hauser & Wirth Bookshop and Roth Bar, 548 West 22nd Street, New York, NY 10011.

Introduction

The efficiency of shells is often exemplified by examples of nature. In particular the avarian egg shell and the sea shell come to mind.  A large chicken egg for example is about 4.5cm and has a typical shell thickness of 0.05mm ( slenderness ratio of 900) and could theoretically sustain a load of 14kN (that is the weight of about 14 American football players). The shell can be very slender and sustain high distributed loads because its form follows the flow of internal loading.  To further stiffen against impact loading, some shells in nature are equipped with corrugations like many tropical sea shells.

walking on eggs
Egg shells are amazingly strong under uniformly distributed loading.

Civil shell structures mostly originated in Germany in the beginning of the 21st century, spurred by development of analytical “shell” theory and reinforced concrete. Their evolution in that century can be marked by 3 phases.  These phases also happen to span the biological life of Belgian artist Marcel Broodthaers (1924-1976) who is , among other projects, known for his assemblies of shells of eggs and mussels.

In this post, I briefly describe the history of civil shell design and construction in Belgium in the 20th century and in particular I focus on the work of the civil engineer Andre Paduart (1914-1985), who operated in the same time and geographical space as Marcel Broodthaers.

armoire blanche
White Cabinet and White Table, Marcel Broodthaers, 1965

The early shell period 1912-1940:  utilitarian cylindrical shells in the Port of Antwerp

The initial shell designs were entirely envisaged, analyzed and built by engineers, interested in spanning large spaces without intermediate supports in the most material efficient manner.  The German contractor firm Dyckerhoff and Widmann AG first developed analytical theories to analyze shapes, related to domes (spheres) and vaults (cylinders).  Utilitarian spaces such as warehouses and aircraft hangars were roofed with these shells.  A fine example of such shells can still be found on Kaai 105, 107 and 109 at the Albert Dock in Antwerp, a port city in the North of Belgium.  The fast port reconstruction after the destruction of the Second World War demanded warehouse structures and construction techniques that were cost-effective.  The Belgian structural engineer Andre Paduart designed and built  465m of such warehouse sheds along the Docks in Antwerp. Each shed has 31 bays, covered with a reinforced concrete 8 to 12cm thin cylindrical shell. The shell had a transverse span of 15m and a rise of 3m.  To allow daylight to flood the shed, a rectangular opening (40m x 3m) ran along the crown of the cylindrical shell in the longitudinal direction. To economize, the formwork was re-used each week to build another bay.  These shells still exist today and are structurally significant because they have no edge beams and no permanent tie rods to resist the transverse shell trust.

A few international other significant shells of that period include MarketHall Leipzig (Germany, 1927 – 1930, Dyckerhoff and Widmann AG), Orly Hangar (,France, 1921, Eugene Freyssinet)

antwerp
Cylindrical Shells in the Port of Anwerp designed by Andre Paduart

 

Second Period 50’s and 60’s: Iconic shells realized for their visual expressiveness at Expo ’58, Brussels

The increasing body of knowledge in shell theory and construction, initially led the formal language for shells. Internationally, the richness of shells from that era have widely been showcased by the ribbed spherical and cylindrical shell forms of Pier Luigi Nervi (1891-1979) and the hyperbolic paraboloid (hypar for short) thin shells of Felix Candela (1920-1997).  In 1958 Candela built his masterpiece Los Manantiales, a radially arranged assembly of expressive hypars.  In the same year the capital of Belgium, Brussels, held Expo ’58, the first major World’s Fair after World War II.  Iconic pavilions and installations, built for this grand event, included the Atomium and the Philips Pavilion, an arrangement of nine hypars designed by Le Corbusier. Lesser known are the other shells that populated the Expo’58 site including the hypar information kiosk (designed by J.P. Blondel, the vaulted United Nations Pavilion and the semi-spherical Tuilier restaurant.

In 1957,  Broodthaers was a manual laborer on the construction site of the Expo 58 “Avec l’intention de [se] rapprocher des hommes qui la construisent ” [“to get closer to the people that are physically making the Expo”]. In 1958, he published “Another World,” an essay on The Atomium published in Le Patriote illustré, vol. 74, No. 10, Brussels, 9 March 1958, p. 389.

Broodthaers
Top Row: Atomium, Philips Pavilion, Information Kiosk, Bottom Row: United Nations Pavilion and Tuilier Restaurant
broodthaers
Marcel Broodthaers as a construction worker on Expo ’58 site, 1957
atomium
Marcel Broodthaers, “Another World”, an essay on the Atomium, 1958

Our attention goes out to a more sculptural shell “the Arrow” which dominated the Expo ’58 site. Andre Paduart received from the Belgian government a commission to design and construct a symbol exemplifying the “victory of civil engineering over nature”. The Arrow, a thin reinforced concrete thin folded plate cantilevered 80m and was balanced by a thin 29m span shell on three supports. The folded plate had a tickness of only 4 cm at its tip and the shell on three supports had a thickness of only 6cm.  The cantilever supported a pedestrian bridge that overlooked a scale map of Belgium.  This map showed civil engineering works!  For this incredible engineering tour de force, Andre Paduart and the architect of the project received the 1962 Construction Practice Award of the American Concrete Institute.

In 1964, Marcel Broodhaerts showcased his work “Casserole and closed mussels” and stated  ’The bursting out of the mussels from the casserole does not follow the laws of boiling, it follows the laws of artifice and results in the construction of an abstract form’

paduart1
Andre Paduart (with glasses and hat) in front of architectural model of the Arrow

paduart2

paduart3
Postcard showing the Arrow with suspended footbridge, Andre Paduart, 1958
Casserole and Closed Mussels 1964 by Marcel Broodthaers 1924-1976
Casserole and Closed Mussels, Marcel Broodthaers, 1966

 

Third Phase 70’s and 80’s: Decline of shell structures and folded plates at the Groenendael Hippodrome

In the 70’s the architectural interest in the expressiveness of shells faded. At the same time, the cost of labor involved in constructing shells, became uneconomic and other long-span structural solutions were favored.  To cover the grandstand of a hippodrome near Brussels, Andre Paduart designed and constructed a 13.5m cantilevering folded plate with a thickness ranging from 7 to 12cm only.  The roof had a width of 106m and no expansion joints. The roof is reminiscent of Eduardo Torroja’s (1891-1961) Zarzuela hippodrome and Hilario Candela’s Miami Marine Stadium.  In 2012, these folded plates were demolished.

In 1976, Marcel Broodthaers is buried at the cemetery of Ixelles, Brussels at a distance of 100m to the University Libre de Bruxelles where Andre Paduart taught thin shell theory.

paduart4
Folded Plate Roof at Groenendael Hippodrome, Andre Paduart, 1980
broodthaersgrave.jpg
Tombstone Marcel Broodthaers, Ixelles Cemetary, 1976.

Author:  Sigrid Adriaenssens

I would like to thank Joe Scanlan for co-constructing the storyline and Paul Van Remoortere for providing valuable information.

References:

Espion, B., Halleux, P., & Schiffmann, J. (2003). Contributions of André Paduart to the art of thin concrete shell vaulting. Proc. of the 1st Int. Congr. on Construction History, 829-838.

What I am thinking: Bill Baker at SOM

William F. Baker, also known as Bill Baker, is one of the leading structural engineers of our generation. Baker was the principal engineer of many buildings including the Burj Khalifa (Dubai, 2004)  and the Broadgate Exchange House (London, 1990) and can be considered as the exponent of the innovative structural engineering  tradition cultivated at Skidmore, Owings & Merrill.

Sigrid Adriaenssens: What is the SOM approach to design?

Bill Baker: I’m a structural engineer within an architectural engineering firm, and that makes my position at SOM a bit unusual. Many of the structural engineering firms out there are consultancy firms, whereas SOM does both. SOM is special in the emphasis on integrated design where the architects and the engineers work together from the very beginning before there is any kind of solution or scheme. This process enables us to develop things that work with SOM’s philosophy of design. The interpretation of that philosophy will keep morphing over time, but essentially what one would expect in an SOM building would be three attributes: simplicity, structural clarity, and sustainability. It’s great when a building has all three of those attributes. Those values naturally align with our philosophy as structural engineers as well. We prefer a simple solution to a complex one. We design structures that clearly express their function and have efficient structural systems that minimize the use of materials and minimize embodied carbon. Our aesthetic values and our technical values are the same. It’s not just engineering, it’s an engineering philosophy.

Bill Baker collaborating with architects and engineers on the Burj Khalifa at SOM
Bill Baker collaborating with architects and engineers on the Burj Khalifa at SOM. Photo ©SOM

How do you situate yourself in the tradition of North American Engineering?

I don’t really think of myself as a North American engineer, although I am based in North America. I look around the world for my inspiration. As far as role models, one of the greatest structural engineers that I’ve ever met is Jörg Schlaich, an engineer from Germany. I’ve had the opportunity to work under Fazlur Khan for a brief time, and I’ve studied his work in-depth. The people who I’ve found helpful in my career are both engineers and architects within SOM including Myron Goldsmith, Hal Iyengar, Stan Korista, John Zils, and Jin Kim. Jin Kim was an architect who, on my very first project, came to me and was very upset with something I had designed because I had created a stair that was very ugly. He had admonished me that my job is to design structures that architects would feel bad to cover up. He was a very important mentor to me.

SOM Colleague (Left), Fazlur Khan (middle), and Hal Iyengar (right) in the office
SOM Colleague (Left), Fazlur Khan (middle), and Hal Iyengar (right) in the office. Photo ©SOM

I’ve always had mentors from other firms. Bill LeMessurier was a great mentor to me. I spent time with him at several conferences and would call him when I needed advice on ideas related to the industry. I’ve always had a great relationship with Les Robertson, and I was fortunate enough to work with him when he was a peer reviewer on an early project of mine. We had some very interesting conversations.

However, a lot of my mentors are not necessarily designers. In the UK there is Stuart Lipton, a developer, and Peter Roger, his partner who works on the constructability of a project. They’ve been very influential on my work.

From academia, the writings and lectures of Princeton’s David Billington are very important to me.

As far as what perhaps sets me apart is that I’m a great believer in research. It is very important to me to use research to explore new structural concepts that can lead to new architecture. SOM is very active and consistent with that idea, and we have innovated new technologies and concepts that were not previously known in the profession because of our research. We’ve discovered new understandings of the way structures work, and this enables us to design in different ways. That’s something about SOM that sets us apart from other engineering firms.

Bill Baker in SOM_s Wind Tunnel
Bill Baker in SOM’s Wind Tunnel. Photo © SOM

What is your greatest professional achievement and why?

That’s a tough question. When you say “greatest”, it makes other things secondary. I have a lot of things I’m very proud of, and just like you don’t rank your children, I don’t want to rank my achievements. There are some buildings I’ve been involved in that I’m very proud of, like the General Motors entry pavilion in Detroit; the Exchange House in London that spans the tracks at the Liverpool street station; and the Burj Khalifa of course. I’m also very proud of some buildings that were never built, like 7 South Dearborn, because of the interesting concepts we used to design them.

Broadgate Exchange House
Broadgate Exchange House. Photo © Richard Waite
Burj Khalifa
Burj Khalifa. Photo © Nick Merrick | Hedrich Blessing

I greatly enjoy working with artists. They can table our technical input and use it to inform their art. Our work with Inigo Manglano-Ovalle, James Carpenter, and James Turrell was very satisfying to me.

Gravity is a Force to be Reckoned With by Inigo Manglano-Ovalle
Art Installation by Inigo Manglano-Ovalle titled “Gravity is a Force to be Reckoned With”.

That’s on the project side. On the professional side, I think I’ve been helpful in moving the profession towards a more creative way to design. By explaining what it is we do as far as research and discovering new ideas, I believe we’ve helped the profession to keep moving forward.

Within the profession, it is very important for us to promote a technology-based creative process that leads to new architecture. I’ve worked very hard at that by using the soap box here at SOM to share this knowledge in order for the profession to rise to a new level.

What is your favorite structure and why? Could it be improved and how?

The John Hancock Center in Chicago is my favorite structure because of its clarity, the simplicity, and sophistication. The way it meets the ground, the way it tells its story. How would I improve it? I’d improve it by making the floor-to-floor height a little better. The apartments are a little tight! But overall, it’s a great building. My improvements to it would be fairly secondary.

John Hancock Center
John Hancock Center. Photo © Ezra Stoller

What are Maxwell diagrams and Mitchell frames? Why are they important to you and your work?

For me, Maxwell diagrams (Graphic Statics) help the engineer visualize the forces in a way that no other methodology allows. You can visualize the forces much more clearly. Mitchell frames help you find benchmarks so you know if your solution is efficient by comparing it against a Mitchell structure. They also provide structural geometrics that one may not find using a traditional approach. They are both very important and they both lead to a creative process because they give you feedback that you can, through your intuition, create something new. I don’t think intuition comes from nothing, it is an accumulation of knowledge and experience that leads to new ideas. Having that knowledge can lead you to intuitions that you wouldn’t have otherwise.

What would you change in the education of the next generation of structural engineers?

I would put more emphasis on the theory of structures, engineering mechanics, and the behavior of materials: the true technology of our discipline. These are things that will not change unless you invent new materials. A building code has the shelf life of a banana: it’s going to change and it’s going to morph into something different. However, the underlying physics will stay the same.

What is the use of the future structural engineer? If you go back a long time, you had to understand theory because you could not calculate very much. Today, we’re in a computational age where we use a tremendous amount of brain power to manipulate the “box”.  In the future, computation will be so trivial, where it almost becomes unimportant, but the theory will be the paramount thing that the engineer will bring to design.

Bill Baker studying Burj Khalifa model
Bill Baker studying Burj Khalifa model. Photo: Courtesy of SOM

What question are you never asked and would like to be asked? What would be the answer?

If you had not become an engineer, what would you have become?

An auto-mechanic. Fixing something that’s broken is quite satisfying.

 

We would like to thank Bill for taking the time to answer our questions, as well as Danielle Campbell of SOM for transcribing the interview. Questions by Sigrid Adriaenssens, further editing by Tim Michiels.

What I am thinking: form making artist Maria Blaisse

Maria Blaisse is a Dutch visual artist and designer. She authored the book “The Emergence of Form”, in which she discusses her in-depth research into form in various materials and the numerous application possibilities, both autonomous and product-oriented.

Sigrid Adriaenssens: Why and how do you generate curved forms?

Maria Blaisse: discovering the curved lines .. while experimenting with incisions  in a rubber inner tube ( for a party of my children)  and while putting the forms on my head  something amazing happened. Then I realized I touched an energy field. I am still working with it.

I found the potential of the inner and outer curve of a torus. The inner curve generates energy and form, while spiraling centripetal. It was the most powerful thing to discover, the outer curve spiraling centrifugal loses form and energy. In my book the emergence of form you can see this research based on one form and one structure from here one can design any form or structure without any waste.

Variations on rubber inner tube – Copyright of Maria Blaisse

In your book “The emergence of form”, you state “form is ‘frozen’ movement”.  Please explain and illustrate that idea?

A form is always part of a movement. I found out while editing film that the stills have the most impact: the form is energized.

systematic variations in gauze structures based on one form  .png

Systematic variations in gauze structures based on one form – Copyright of Maria Blaisse

In your design approach, you emphasize beauty (wanting to ‘move’ people) but also material and energy efficiency. Why is that important to you and to society?

Continue reading “What I am thinking: form making artist Maria Blaisse”

A seismic retrofit for an adobe church in the Peruvian Andes

The Peruvian countryside is dotted with earthen buildings dating back to the Spanish conquest of the Americas. The Spanish adapted traditional European building typologies to the locally available construction material: earth.Many of these earthen buildings have stood the test of time and have become of great monumental value to local communities and visitors alike. Some of them, however, have suffered extensive damage, or even fatal collapse due to one of the threats in the new world not so critically shared by Spain: earthquakes. While buildings were soon adapted and retrofitted to resist seismic action, the combination of the low-strength adobe (mud-brick) and high regional seismicity has remained a concern for many – if not all – subsequent generations.

IMG_6812.JPG
Remains of earth-cane barrel vault roof of a church near Ica, Peru that collapsed during the 2007 Pisco earthquake. (Image Tim Michiels, copyright The Getty Conservation Institute)

Today, relatively little attention is given within the academic community to the engineering and seismic design of earthen buildings. Despite the availability of advanced structural design codes, powerful calculation tools, and extensive material research labs, experts still struggle to characterize the behavior of masonry buildings, and especially earthen structures, during earthquakes. Thus, designing sensible and non-intrusive intervention techniques to preserve often languishing adobe monuments is a major ongoing challenge.

EAI.SRP.KunoTambo.Ext.2010.06.01.SL.IMG_1022.jpg
Front facade of the church of Kuño Tambo (Image Sara Lardinois, copyright The Getty Conservation Institute)

Continue reading “A seismic retrofit for an adobe church in the Peruvian Andes”

How to describe the esthetics of structural surfaces? (2/2)

In an earlier post, I wrote about how and why we seem at loss for words when describing the esthetics of a structural surface. I continue that discussion here and analyse what vocabulary layman use and make suggestions for where we might seek additional jargon. I  build my argument upon the results of an experiment carried out by graduate student Rebecca Napolitano in Fall 2016 on the Princeton University Campus.  In the physical experiment, a membrane was installed on a highly frequented location on a central location next to a neo-gothic medium size building.The  membrane was shown in an existing built environment, which might have caused distraction from observing the pure membrane form, but allowed for a full 3D perception of the membrane deforming in the wind.  Randomly selected 138 undergraduate students who passed by the installation, were asked to describe the membrane structure with one word.  If their response coincided with an already recorded word, they were prompted for another defining word.

This physical experiment yielded a plenitude of words which can be catalogued according to formal analysis or subjective response classes. The first category, formal analysis, is grounded in the fine arts and Vitruvian architecture tradition. This type of analysis disassociates itself from reactions such as elation, fear and awe.  These words describe emotions or subjective responses and constitute the second category.  The subcategories in both classes were pre-established before the collection of data and are based on the ones discussed by [1].

Formal Analysis

We first investigated the vocabulary pertaining to the category of formal analysis. This category holds the subcategories of form, proportion, space and visual mass.

Observing the 3D form of the membrane is not a simple process. In the past, built form has been discussed as a hierarchy of simple forms combined according to rules, into an assembly of complex forms [2].  The words in the experiments refer either to the simple or the complex form or the rule.  Simple form descriptions in Rebecca’s experiment included words such as “round”, ”bulbous”.  Complex form descriptions included  “nurbs”, ”free form” and rules included “tangent continuity”, “cambered”, “periodic”, “smooth”, “logarithmic”, “interlacing”, “weaving”, “optimized” , ”linearly disruptive” and “bendy”.

nurb
Nurbs, non-uniform rational basis spline (image credit bluesmith.co.uk)

The subcategory proportion evaluates the geometric relationships between the different parts. Traditionally formal rules for proportioning have been defined buildings composed out of analytical forms including hemispheres and cylinders. Unfortunately, they are not that relevant for force-modeled systems such as the membranes in the experiments, because these membrane geometries are far more complex.  These geometries are generated by the laws of physics and are more difficult to proportion and steer than analytical ones.  A few words like “contrived complexity” hinting at these characteristics, showed up in the experiment.

A number of words in the experiments related to space.  The observers understood space as the Aristotelian idea that the membrane created both a positive space and a negative space or “embrace and grows space”. Words like “encompassing“ (positive space, the membrane itself) and, “limitless” and “unconstrained” (negative space, the space that co-exists separately alongside the space occupied by the membrane itself) exemplified the subcategory space.

Visual mass as opposed to actual mass can be achieved by the perceptions of light, color and texture. The untrained observer tends to make a connection between visual and gravitational mass.  Previous studies show how white surfaces, such as the one in the physical experiment, and the smoothness of the membrane in the experiment helped the structure as being perceived as lightweight [1] . These perceptions were captured in the experiments in the words “sinuous” and “slim”.

Subjective Responses

Besides the words that fall in the category of formal analysis, we closely examined the second category, called subjective responses. The results showed that the observers felt that the membrane has a certain character that spoke to them.  The words were distributed over the subcategories anthropomorphism, sensuality allusion, physical security and empathy.

Some observers saw the membrane as a living creature (eg. “sting ray”, “cocoon”) and endowed it with personality and intent. This association is called anthropomorphism.  The membranes were also perceived as “pregnant in the breeze”, “in bloom” and “about to take flight”.

Many observers found that these surfaces had a sensuous quality and captured those impressions in words like “sensual”, “voluptuous” and “calliphygian”. These words refer to the movement of the membrane as it progresses to a visual climax, followed by a relief of tension. In particular the inward and outward curving membrane surfaces have a particular sensual quality, which is missed by forms with single curvature.

Some spectators covertly or indirectly referred to an object from an external context.  The membranes evoked allusions with words such as “Rubenesque”. This word for example refers to the works of the Baroque painter Pieter-Paul Rubens (1577-1640) and means plump or rounded in an attractive way.  Other images included poetic metaphors such as “symphonic”, “motion frozen in time”, “essence of motion”, “natural choreography”.  Other allusions included scientific, artificial natural associations such as “meniscus”, “satin/silk, “hilly” and “motion of water”. These references to physical objects, although they are not grounded in the innate perception of the observer, contributed to aesthetic experiences while viewing the membrane.

Anthropomorphism, an association to a sting ray (left ), allusions to Ruben’s works (right), ,silk (bottom right) and hilly (bottom left) call the membrane in the wind to mind without mentioning it explicitly. (image courtesy Flickr the Commons)

Continue reading “How to describe the esthetics of structural surfaces? (2/2)”

How do gridshells and longspan roofs perform in earthquakes?

The 500km rupture of the 2011 M9 Great East Japan Earthquake resulted in extensive damage in over a half dozen prefectures from Tokyo to Iwate.  Several lessons can be drawn from the response of spatial structures, particularly long span roofs. While the global behavior was generally excellent, nonstructural element damage and local failure modes were widely observed. This is unfortunate, as such structures play a vital role in post-disaster recover as shelters (e.g. Shigeru Ban) and minor design changes could have prevented much of the damage. In the aftermath, the Architectural Institute of Japan [1] conducted a detailed reconnaissance of dozens of gymnasiums, sports stadia and halls and found several reoccurring damage patterns:

 

gridshell
Miki Disaster Management Park Beans Dome, Sport Stadium and Emergency Staging Area in Hyogo Prefecture (photo credit penccil::Slowtechture)

Shear failure of baseplate anchors

Continue reading “How do gridshells and longspan roofs perform in earthquakes?”

Constructing Ice Structures

Since it has been snowing in Princeton this week, there is really no better time to write about how to construct structures out of ice. The motivation of building with ice – as opposed to another construction materials such as concrete-  is that it makes experimenting much more economic and zero-carbon.  Structural ice experiments also allow for the ability to discover a new medium that could fill the demand for a building material that will not see a dramatic decrease in its strength after being subject to several extreme freeze-thaw cycles [1].  In many extreme cold environments, it would be desirable to have an inexpensive and safe way to reconstruct infrastructure or buildings out of ice to address annual need for shelters and roads rather than rebuilding or repairing these possibly concrete structures that will ultimately be damaged by the weather each year. In the following sections we provide a historic glimpse of key ice structures and how they were built.

Throughout history, ice has been used as an inexpensive and naturally available building material. The oldest known ice structures are igloos that were made from snow blocks [2]. The igloos date from prehistory and have developed a form in which the structure takes exclusively compressive stresses and experiences zero bending moment everywhere in the shell. This form, called a catenoid evolves from the revolution of a parabolic cross-section into a dome. The igloos are constructed into this form using compacted ice blocks.  The gaps between the blocks are filled with snow.  Heating in the igloo then melts the inner surface of the igloo which then refreezes as a layer of ice that contributes to the overall strength of the igloo [2].

Iglulik Snowhouse (photo by Albert Low, 1903, image credit Library and Archives Canada/C-24522).

 

In 1739, Russian empress Anna Ivanovna order the first ice palace to be built [2].  These impressive structures were made of blocks from rivers and lakes that were trimmed and stacked to form a masonry wall [2].  This marked the beginning of functional ice structures that did not take the traditional catenoid shape.The form was imitated in the 1980’s using cast snow in which wooden molds were used to create compact snow walls to be sculpted.

Ice palace (left) for Russian empress Anna Ivanovna (right Louis Caravaque, 1730)  (image credit wikimedia)

More practically, recent construction of ice hotels has seen the use of special wet snow being sprayed onto steel molds with heights up to 5m and spans up to 6m.  In this process the snow is allowed a two day freezing period before the molds are removed.  These structures get stronger as the snow melts and refreezes over time.  This occurs on a diurnal cycle as the top layer of snow melts slightly each day and then freezes to solid ice during the night [2].

Ice Hotel Sweden constructed of wet snow sprayed onto steel molds (image credit holidayguru.ie)

Continue reading “Constructing Ice Structures”

“Thinking by Modeling”- Frei Otto Exhibition

In November 2016, the ZKM – Zentrum fuer Kunst und Medien – Centre for Arts and Media – in Karlsruhe, Germany, inaugurated its exhibition on the works of Frei Otto entitled “Frei Otto – Thinking by Modeling” (November 05, 2016 – March 12, 2017): an exhibition unprecedented in terms of conception and extent, curated by Prof. Georg Vrachliotis. In the year before, Frei Otto had passed away, while in the same year he had been awarded the prestigious Pritzker Prize for architecture. As a result, the attention  of architects, engineers and designers worldwide has been refocused on the  personality, the works and the achievements of Frei Otto. The opening of the exhibition was widely picked up, attracted a lot of visitors and comes along with several “special events”, one of them being a symposium which will be held on January 26-27, 2017.

1
© ZKM Zentrum für Kunst und Medien, Foto: Grünschloss

The works of Frei Otto and his research teams play an active role in current design of architecture and engineering. They are often referred to when lightweight structures or bionically inspired designs are discussed. The current attention on Frei Otto,his insights and merits should be interpreted as contributions to our heritage, prospect and responsibility. His exclamation “Stop building the way you build!“, formulated during a lecture in 1977 [1], is still reverberating. This outcry can be taken as an inspiration for many disciplines, be it architecture, engineering, biology or social sciences.

Frei Otto and the Institute of Lightweight Structures in Stuttgart

The establishment of the “Institute of Lightweight Structures” at the University of Stuttgart, Germany, was a starting point to a “time line” of lightweight structures at this location. Fritz Leonhardt called Frei Otto, who was at that time living and working in Berlin, to Stuttgart University. Fritz Leonhardt (1909 – 1999) was the designer of the Stuttgart television tower which was the first of its kind being constructed in reinforced concrete, the author of books dealing with “aesthetics” of bridges, and pioneer in the field of designing structures in reinforced concrete. Leonhardt had published his thoughts about lightweight structures as a “demand of our times” in 1940 [2], a time facing material scarcity during a devastating war which had been triggered by Nazi-influenced Germany. The lack of material, or the restriction to a certain kind of material, can be taken as a source of inspiration for lightweight construction: Eladio Dieste, Felix Candela and Robert Maillart developed their unique aesthetics by this kind of limitation. Fritz Leonhardt was aware of this special quality and in that spirit he called Frei Otto to be Professor at the the Institute of Lighweight Structures IL at Stuttgart University.

During this time, Frei Otto was dealing with the detailed design of the German pavilion for the Expo Montreal in 1967, a piece of architecture which was path breaking in many ways. A test building of the Expo roof, prototype of a cable net structure, was to become the place of location of the IL.

Joerg Schlaich was the successor of Fritz Leonhardt as Professor at the University of Stuttgart. Werner Sobek assumed the chair of Frei Otto at the Institute of Lightweight Structures in 1994. In 2001, he was additionally appointed as successor to Joerg Schlaich’s Chair. The two chairs were merged to become the “Institute of Lightweight Structures and Conceptual Design” ILEK. In 2015, Werner Sobek was awarded the “Fritz Leonhardt Prize”, a distinction awarded every three years to an engineer in recognition of outstanding contributions to the area of structural engineering. In a very emotional speech, Sobek stated his view of the necessity of lightweight structures, based on very descriptive and startling numbers [3].

The circle is closing: the need for lightweight structures, be they named material-efficient or low-carbon-footprint, is even more relevant in the beginning of the 21st century. Frei Otto initiated a center of knowledge which reached out to the world.

“Thinking by Modeling” – the exhibition

The exhibition is set up in two large-scaled rooms of the “ZKM” (Zentrum fuer Kunst und Medien – Center for Arts and Media) museum in Karlsruhe. The building itself was originally built as a munition factory and is a protected monument with classical elements of industrial architecture. It hosts the ZKM since 1997.

The city of Karlsruhe is also the location of the “saai” (Suedwestdeutsches Archiv für Architektur und Ingenieurbau – Southwest German Archive of Architecture and Engineering), where Frei Otto’s works have been archived after his passing away.

Due to the initiative of Prof. Georg Vrachliotis, Professor at the KIT Karlsruhe, this impressive exhibition has been realized.

The exhibition is constituted by four elements: model landscape, open archive, cosmos, and projection.

Continue reading ““Thinking by Modeling”- Frei Otto Exhibition”

How to describe the esthetics of structural surfaces? (1/2)

It has been said that the work of Frei Otto (Germany, 1912-2015) has a sculptural quality to it [1]. Although Frei Otto’s parents were sculptors, he insisted that the shapes he produced were rigidly grounded in the laws of physics [1], and was very reluctant to describe their aesthetic value. This observation hints at the questions that this paper starts to address, namely how can one describe the aesthetics of a curved structural surface?

form_finding_study_copyright_frei_otto
Structural Membrane Form Finding Study – Image Credit Frei Otto

It is observed that structural aesthetic critique is a little practiced discipline. In engineering education, students generally are not encouraged to express their emotions about the built environment, and are not frequently encouraged to develop an enthusiasm for visual experiences [2]. Beauty seems to engineers such a vague concept, hard to define accurately to others.

Continue reading “How to describe the esthetics of structural surfaces? (1/2)”

Our ultimate top 20 book list for 2016

As the holidays are approaching and as your loved ones – yet again – run out of inspiration for your holiday gift… the Form Finding Lab comes to the rescue. We present you a list of our favorite books on engineering, architecture and anything in between.

Happy holidays,

The Form Finding Lab.

books

Compiled by Tim Michiels, with contributions of Sigrid Adriaenssens, Victor Charpentier, Demi Fang, Andrew Rock and Olek Niewiarowski